3.313 \(\int \frac{\sqrt{1+2 x^2+2 x^4}}{x^6 \left (3+2 x^2\right )} \, dx\)

Optimal. Leaf size=647 \[ \frac{4 \sqrt{2} \sqrt{2 x^4+2 x^2+1} x}{45 \left (\sqrt{2} x^2+1\right )}-\frac{4 \sqrt{2 x^4+2 x^2+1}}{45 x}-\frac{2}{27} \sqrt{\frac{5}{3}} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )-\frac{\sqrt [4]{2} \left (19-2 \sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{135 \sqrt{2 x^4+2 x^2+1}}+\frac{10 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{27 \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}+\frac{5 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{27 \sqrt{2 x^4+2 x^2+1}}-\frac{4 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{45 \sqrt{2 x^4+2 x^2+1}}-\frac{5 \sqrt [4]{2} \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{81 \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{\sqrt{2 x^4+2 x^2+1}}{15 x^5}+\frac{4 \sqrt{2 x^4+2 x^2+1}}{135 x^3} \]

[Out]

-Sqrt[1 + 2*x^2 + 2*x^4]/(15*x^5) + (4*Sqrt[1 + 2*x^2 + 2*x^4])/(135*x^3) - (4*S
qrt[1 + 2*x^2 + 2*x^4])/(45*x) + (4*Sqrt[2]*x*Sqrt[1 + 2*x^2 + 2*x^4])/(45*(1 +
Sqrt[2]*x^2)) - (2*Sqrt[5/3]*ArcTan[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/27 -
 (4*2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*Elli
pticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(45*Sqrt[1 + 2*x^2 + 2*x^4]) + (5*2
^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF
[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(27*Sqrt[1 + 2*x^2 + 2*x^4]) + (10*2^(1/
4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*A
rcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(27*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4])
 - (2^(1/4)*(19 - 2*Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqr
t[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(135*Sqrt[1 + 2*x^
2 + 2*x^4]) - (5*2^(1/4)*(3 + Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4
)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24, 2*ArcTan[2^(1/4)*x], (2
- Sqrt[2])/4])/(81*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 1.03856, antiderivative size = 647, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 10, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.345 \[ \frac{4 \sqrt{2} \sqrt{2 x^4+2 x^2+1} x}{45 \left (\sqrt{2} x^2+1\right )}-\frac{4 \sqrt{2 x^4+2 x^2+1}}{45 x}-\frac{2}{27} \sqrt{\frac{5}{3}} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )-\frac{\sqrt [4]{2} \left (19-2 \sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{135 \sqrt{2 x^4+2 x^2+1}}+\frac{10 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{27 \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}+\frac{5 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{27 \sqrt{2 x^4+2 x^2+1}}-\frac{4 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{45 \sqrt{2 x^4+2 x^2+1}}-\frac{5 \sqrt [4]{2} \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{81 \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{\sqrt{2 x^4+2 x^2+1}}{15 x^5}+\frac{4 \sqrt{2 x^4+2 x^2+1}}{135 x^3} \]

Warning: Unable to verify antiderivative.

[In]  Int[Sqrt[1 + 2*x^2 + 2*x^4]/(x^6*(3 + 2*x^2)),x]

[Out]

-Sqrt[1 + 2*x^2 + 2*x^4]/(15*x^5) + (4*Sqrt[1 + 2*x^2 + 2*x^4])/(135*x^3) - (4*S
qrt[1 + 2*x^2 + 2*x^4])/(45*x) + (4*Sqrt[2]*x*Sqrt[1 + 2*x^2 + 2*x^4])/(45*(1 +
Sqrt[2]*x^2)) - (2*Sqrt[5/3]*ArcTan[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/27 -
 (4*2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*Elli
pticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(45*Sqrt[1 + 2*x^2 + 2*x^4]) + (5*2
^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF
[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(27*Sqrt[1 + 2*x^2 + 2*x^4]) + (10*2^(1/
4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*A
rcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(27*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4])
 - (2^(1/4)*(19 - 2*Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqr
t[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(135*Sqrt[1 + 2*x^
2 + 2*x^4]) - (5*2^(1/4)*(3 + Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4
)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24, 2*ArcTan[2^(1/4)*x], (2
- Sqrt[2])/4])/(81*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 95.4528, size = 581, normalized size = 0.9 \[ \frac{4 \sqrt{2} x \sqrt{2 x^{4} + 2 x^{2} + 1}}{45 \left (\sqrt{2} x^{2} + 1\right )} - \frac{4 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) E\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{45 \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{10 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{27 \left (- 3 \sqrt{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{\sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (- 8 \sqrt{2} + 76\right ) \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{540 \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{5 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{27 \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{5 \cdot 2^{\frac{3}{4}} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (2 + 3 \sqrt{2}\right ) \left (\sqrt{2} x^{2} + 1\right ) \Pi \left (- \frac{11 \sqrt{2}}{24} + \frac{1}{2}; 2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{162 \left (- 3 \sqrt{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{2 \sqrt{15} \operatorname{atan}{\left (\frac{\sqrt{15} x}{3 \sqrt{2 x^{4} + 2 x^{2} + 1}} \right )}}{81} - \frac{4 \sqrt{2 x^{4} + 2 x^{2} + 1}}{45 x} + \frac{4 \sqrt{2 x^{4} + 2 x^{2} + 1}}{135 x^{3}} - \frac{\sqrt{2 x^{4} + 2 x^{2} + 1}}{15 x^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((2*x**4+2*x**2+1)**(1/2)/x**6/(2*x**2+3),x)

[Out]

4*sqrt(2)*x*sqrt(2*x**4 + 2*x**2 + 1)/(45*(sqrt(2)*x**2 + 1)) - 4*2**(1/4)*sqrt(
(2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(sqrt(2)*x**2 + 1)*elliptic_e(2*ata
n(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(45*sqrt(2*x**4 + 2*x**2 + 1)) + 10*2**(1/4)*sq
rt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(sqrt(2)*x**2 + 1)*elliptic_f(2*
atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(27*(-3*sqrt(2) + 2)*sqrt(2*x**4 + 2*x**2 +
1)) - 2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(-8*sqrt(2) + 7
6)*(sqrt(2)*x**2 + 1)*elliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(540*sqrt
(2*x**4 + 2*x**2 + 1)) + 5*2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1
)**2)*(sqrt(2)*x**2 + 1)*elliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(27*sq
rt(2*x**4 + 2*x**2 + 1)) - 5*2**(3/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 +
 1)**2)*(2 + 3*sqrt(2))*(sqrt(2)*x**2 + 1)*elliptic_pi(-11*sqrt(2)/24 + 1/2, 2*a
tan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(162*(-3*sqrt(2) + 2)*sqrt(2*x**4 + 2*x**2 +
1)) - 2*sqrt(15)*atan(sqrt(15)*x/(3*sqrt(2*x**4 + 2*x**2 + 1)))/81 - 4*sqrt(2*x*
*4 + 2*x**2 + 1)/(45*x) + 4*sqrt(2*x**4 + 2*x**2 + 1)/(135*x**3) - sqrt(2*x**4 +
 2*x**2 + 1)/(15*x**5)

_______________________________________________________________________________________

Mathematica [C]  time = 0.236431, size = 224, normalized size = 0.35 \[ -\frac{72 x^8+48 x^6+66 x^4+42 x^2-(12+24 i) \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} x^5 F\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+36 i \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} x^5 E\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+50 (1-i)^{3/2} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} x^5 \Pi \left (\frac{1}{3}+\frac{i}{3};\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+27}{405 x^5 \sqrt{2 x^4+2 x^2+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[1 + 2*x^2 + 2*x^4]/(x^6*(3 + 2*x^2)),x]

[Out]

-(27 + 42*x^2 + 66*x^4 + 48*x^6 + 72*x^8 + (36*I)*Sqrt[1 - I]*x^5*Sqrt[1 + (1 -
I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticE[I*ArcSinh[Sqrt[1 - I]*x], I] - (12 + 24*
I)*Sqrt[1 - I]*x^5*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticF[I*ArcSi
nh[Sqrt[1 - I]*x], I] + 50*(1 - I)^(3/2)*x^5*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 +
 I)*x^2]*EllipticPi[1/3 + I/3, I*ArcSinh[Sqrt[1 - I]*x], I])/(405*x^5*Sqrt[1 + 2
*x^2 + 2*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.028, size = 549, normalized size = 0.9 \[ -{\frac{1}{15\,{x}^{5}}\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}+{\frac{4}{135\,{x}^{3}}\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}-{\frac{4}{45\,x}\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}-{\frac{4\,{\it EllipticF} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{45\,\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{ \left ({\frac{32}{135}}-{\frac{32\,i}{135}} \right ) \left ({\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) -{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) \right ) }{\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{8\,{\it EllipticF} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{27\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{{\frac{4\,i}{27}}{\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{4\,{\it EllipticE} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{27\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{{\frac{4\,i}{27}}{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{20}{81\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\it EllipticPi} \left ( x\sqrt{-1+i},{\frac{1}{3}}+{\frac{i}{3}},{\frac{\sqrt{-1-i}}{\sqrt{-1+i}}} \right ){\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((2*x^4+2*x^2+1)^(1/2)/x^6/(2*x^2+3),x)

[Out]

-1/15*(2*x^4+2*x^2+1)^(1/2)/x^5+4/135*(2*x^4+2*x^2+1)^(1/2)/x^3-4/45*(2*x^4+2*x^
2+1)^(1/2)/x-4/45/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2*
x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+(-32/135+32/135
*I)/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*(
EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-EllipticE(x*(-1+I)^(1/2),1/2
*2^(1/2)+1/2*I*2^(1/2)))+8/27/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1
/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-4/
27*I/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)
*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-4/27/(-1+I)^(1/2)*(-I*x^2+x
^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1
/2*2^(1/2)+1/2*I*2^(1/2))+4/27*I/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)
^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))
-20/81/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/
2)*EllipticPi(x*(-1+I)^(1/2),1/3+1/3*I,(-1-I)^(1/2)/(-1+I)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1}}{{\left (2 \, x^{2} + 3\right )} x^{6}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)/((2*x^2 + 3)*x^6),x, algorithm="maxima")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)/((2*x^2 + 3)*x^6), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1}}{2 \, x^{8} + 3 \, x^{6}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)/((2*x^2 + 3)*x^6),x, algorithm="fricas")

[Out]

integral(sqrt(2*x^4 + 2*x^2 + 1)/(2*x^8 + 3*x^6), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 x^{4} + 2 x^{2} + 1}}{x^{6} \left (2 x^{2} + 3\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((2*x**4+2*x**2+1)**(1/2)/x**6/(2*x**2+3),x)

[Out]

Integral(sqrt(2*x**4 + 2*x**2 + 1)/(x**6*(2*x**2 + 3)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1}}{{\left (2 \, x^{2} + 3\right )} x^{6}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)/((2*x^2 + 3)*x^6),x, algorithm="giac")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)/((2*x^2 + 3)*x^6), x)